Experimental results of the manuscript:

 

Weisheng Dong, Fazuo Fu, Guangming Shi, and Xun Cao, Jinjian Wu, Guangyu Li, and Xin Li, IEEE Trans. On Image Processing, vol. 25, no. 5, pp. 2337-2352, May 2016.

 

Matlab source code associated with this work can be downloaded from here. Code

Note:

(1)   The hyperspectral image super-resolution method in [1] is labeled as “SNNMF”;

(2)   The hyperspectral image super-resolution method in [2] is labeled as “CNMF”;

(3)   The hyperspectral image super-resolution method in [3] is labeled as “MF”;

(4)   The hyperspectral image super-resolution method in [4] is labeled as “GSOMP”;

(5)   The hyperspectral image super-resolution method in [5] is labeled as “BSR”;

(6)   The proposed hyperspectral image super-resolution method is labeled as “NSSR”.

Then, the reconstructed high-resolution hyperspectral image (HSI) by the method NSSR on the image cloth is labeled as “NSSR_cloth”. Other result images are labeled similarly.

 

Results on CAVE dataset (Uniform blur kernel)

Results on balloons_ms     Download    Download 16×    Download 32×

Results on cloth_ms        Download    Download 16×    Download 32×

Results on f_pepper_ms     Download    Download 16×    Download 32×

Note: f_pepper_ms denotes the fake_and_real_pepper_ms image in CAVE dataset.

 

Results on Harvard dataset (Uniform blur kernel)

Results on imga6    Download    Download 16×    Download 32×

Results on imgb8    Download    Download 16×    Download 32×

Results on imgd9    Download    Download 16×    Download 32×

 

References:

[1]   E. Wycoff, T. H. Chan, K. Jia, W. K. Ma, and Y. Ma, “A non-negative sparse promoting algorithm for high resolution hyperspectral imaging,” IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), pp. 1409–1413, May 2013.

[2]   N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion,” IEEE Trans. on Geosci. Remote Sens., vol. 50, no. 2, pp. 528–537, 2012.

[3]   R. Kawakami, J. Wright, Y. W. Tai, Y. Matsushita, M. Ben-Ezra, and K. Ikeuchi, “High-resolution hyperspectral imaging via matrix factorization,” IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2329–2336, 2011.

[4]    N. Akhtar, F. Shafait and A. Mian, “Sparse spatio-spectral representation for hyperspectral image super-resolution,” European Conf. on Computer Vision (ECCV), pp. 63–78, 2014.

[5]   Q. Wei, J. Bioucas-Dias, N. Dobigeon, and J. Tourneret, “Hyperspectral and multispectral image fusion based on a sparse representation,” IEEE Trans. on Geoscience and Remote Sensing, vol. 53, no. 7, pp. 3658-3668, July 2015.

 

 

Table 1 PSNR and RMSE results of the test methods on the CAVE dataset (Uniform blur kernel)

S=8

Methods

CNMF

MF

SNNMF

G-SOMP+

BSR

Proposed NSSR

PSNR

RMSE

PSNR

RMSE

PSNR

RMSE

PSNR

RMSE

PSNR

RMSE

PSNR

RMSE

balloons

48.64

0.94

47.15

1.12

48.43

0.97

36.80

3.69

48.48

0.96

50.98

0.72

beads

35.42

4.32

34.56

4.77

35.41

4.33

28.47

9.61

35.15

4.46

37.48

3.41

cd

36.30

3.90

34.23

4.95

36.46

3.83

26.89

11.54

37.75

3.31

40.66

2.36

chart_toy

40.31

2.46

42.45

1.92

42.78

1.85

33.38

5.47

42.68

1.87

45.07

1.42

clay

47.76

1.04

45.65

1.33

47.15

1.12

40.34

2.45

47.55

1.07

49.12

0.89

cloth

36.27

3.92

36.72

3.72

37.10

3.56

32.44

6.09

36.72

3.72

39.07

2.84

eg_statue

47.69

1.05

46.61

1.19

48.14

1.00

38.33

3.09

49.22

0.88

49.14

0.89

face

46.18

1.25

44.14

1.58

44.97

1.44

38.13

3.16

45.58

1.34

46.98

1.14

f_beers

46.51

1.21

45.32

1.38

46.09

1.27

36.56

3.79

46.93

1.15

47.50

1.08

f_food

44.23

1.57

43.23

1.76

45.43

1.36

33.83

5.19

45.29

1.39

47.61

1.06

f_lemon_s

44.53

1.51

42.53

1.91

44.09

1.59

36.23

3.94

45.23

1.40

45.92

1.29

f_lemons

48.23

0.99

42.81

1.85

47.92

1.02

34.13

5.01

49.44

0.86

51.55

0.67

f_peppers

42.29

1.96

45.86

1.30

46.37

1.22

33.36

5.48

45.76

1.31

48.82

0.92

f_strawbe

46.89

1.15

44.20

1.57

47.06

1.13

34.46

4.82

47.59

1.06

48.71

0.94

f_sushi

43.55

1.69

43.77

1.65

45.39

1.37

33.96

5.11

45.03

1.43

46.50

1.21

f_tomates

41.45

2.16

44.14

1.58

44.35

1.55

37.40

3.44

44.36

1.54

46.58

1.20

feathers

35.30

4.38

36.54

3.80

40.19

2.50

31.42

6.85

41.82

2.07

44.02

1.61

flowers

44.45

1.53

40.13

2.51

44.79

1.47

32.41

6.11

45.44

1.36

46.91

1.15

g_tiles

38.22

3.13

36.81

3.68

38.75

2.94

32.70

5.91

38.16

3.15

39.58

2.68

hairs

45.79

1.31

42.81

1.85

44.88

1.45

33.16

5.61

45.64

1.33

46.87

1.16

j_beans

37.66

3.34

37.82

3.28

38.92

2.89

29.56

8.49

40.02

2.54

40.81

2.32

oil_paint

39.88

2.58

40.28

2.47

41.26

2.21

33.64

5.30

41.15

2.23

42.79

1.85

paints

38.87

2.90

30.53

7.58

35.90

4.09

31.11

7.09

39.50

2.70

41.03

2.26

p_face

42.94

1.82

41.58

2.13

42.75

1.86

38.59

3.00

42.97

1.81

44.92

1.45

pompoms

43.66

1.67

41.35

2.18

41.56

2.13

31.55

6.75

45.63

1.33

47.88

1.03

r_apples

50.31

0.78

47.76

1.04

49.50

0.85

33.32

5.51

50.19

0.79

51.75

0.66

r_peppers

46.73

1.18

46.25

1.24

47.71

1.05

33.51

5.38

48.64

0.94

50.65

0.75

sponges

45.69

1.32

45.21

1.40

45.00

1.43

36.02

4.03

44.58

1.50

47.14

1.12

s_toys

44.47

1.52

42.01

2.02

43.68

1.67

28.67

9.39

45.01

1.43

45.64

1.33

superball

45.78

1.31

43.35

1.73

45.91

1.29

35.86

4.11

46.09

1.27

47.97

1.02

th_spools

43.62

1.68

43.55

1.69

44.31

1.55

32.98

5.72

44.52

1.52

46.38

1.22

watercol

39.77

2.62

39.16

2.81

40.64

2.37

27.37

10.91

40.78

2.33

43.01

1.80

Average

43.11

2.01

41.83

2.34

43.53

1.89

33.64

5.69

44.15

1.75

45.91

1.42

Std.dev

4.13

1.03

4.09

1.38

3.83

0.94

3.24

2.22

3.79

0.88

3.66

0.67

S=16

Method

CNMF

MF

SNNMF

G-SOMP+

BSR

Proposed NSSR

balloons

46.57

1.20

44.75

1.48

45.04

1.43

35.27

4.40

46.35

1.23

48.36

0.97

beads

33.95

5.12

32.33

6.16

33.13

5.62

29.18

8.86

33.16

5.61

35.84

4.12

cd

33.21

5.58

31.97

6.42

33.68

5.28

26.38

12.23

34.78

4.65

36.02

4.03

chart_toy

38.66

2.98

39.39

2.73

39.17

2.81

33.46

5.42

41.35

2.18

43.04

1.80

clay

46.52

1.20

43.46

1.71

43.91

1.63

36.42

3.85

45.66

1.33

47.45

1.08

cloth

35.06

4.51

33.27

5.53

33.82

5.20

31.52

6.77

35.46

4.30

37.58

3.37

eg_statue

46.71

1.18

47.22

1.11

47.27

1.10

35.58

4.24

48.44

0.96

48.44

0.96

face

45.15

1.41

43.47

1.71

44.49

1.52

38.30

3.10

44.39

1.54

45.23

1.40

f_beers

44.76

1.47

44.68

1.49

45.17

1.41

35.08

4.49

45.23

1.40

45.98

1.28

f_food

41.85

2.06

39.21

2.79

42.25

1.97

34.31

4.91

43.04

1.80

45.48

1.36

f_lemon_s

42.14

1.99

37.30

3.48

42.30

1.96

35.73

4.17

43.67

1.67

45.20

1.40

f_lemons

45.19

1.40

46.73

1.18

46.30

1.23

37.62

3.35

46.56

1.20

49.56

0.85

f_peppers

39.52

2.69

44.11

1.59

42.07

2.01

33.76

5.23

44.30

1.55

46.84

1.16

f_strawbe

44.57

1.51

41.94

2.04

45.59

1.34

37.62

3.35

46.25

1.24

47.69

1.05

f_sushi

41.58

2.13

41.38

2.17

42.08

2.01

33.84

5.18

43.22

1.76

45.30

1.38

f_tomates

39.76

2.62

44.43

1.53

41.80

2.07

34.49

4.81

43.40

1.72

46.13

1.26

feathers

40.48

2.41

38.45

3.05

37.82

3.28

33.67

5.28

39.90

2.58

42.09

2.00

flowers

43.91

1.63

39.06

2.84

40.87

2.31

33.02

5.69

43.22

1.76

45.28

1.39

g_tiles

37.80

3.28

38.43

3.06

37.55

3.38

33.94

5.12

37.47

3.41

38.18

3.14

hairs

40.67

2.36

43.61

1.68

42.74

1.86

36.29

3.91

44.44

1.53

45.71

1.32

j_beans

35.75

4.16

32.55

6.01

35.87

4.10

28.71

9.36

37.84

3.27

39.19

2.80

oil_paint

39.03

2.85

39.56

2.68

39.98

2.56

34.09

5.04

40.51

2.40

41.96

2.04

paints

37.83

3.27

37.39

3.44

37.31

3.48

32.56

6.01

38.45

3.05

39.38

2.74

p_face

40.72

2.35

40.65

2.37

39.92

2.57

38.44

3.05

41.63

2.11

42.64

1.88

pompoms

40.69

2.36

38.23

3.13

40.89

2.30

33.71

5.26

41.92

2.04

45.05

1.43

r_apples

47.81

1.04

44.82

1.46

47.08

1.13

36.73

3.72

48.54

0.95

50.44

0.77

r_peppers

44.32

1.55

42.01

2.02

45.45

1.36

36.49

3.82

45.87

1.30

49.21

0.88

sponges

44.93

1.45

42.41

1.93

43.08

1.79

33.75

5.24

42.63

1.88

45.90

1.29

s_toys

41.80

2.07

39.92

2.58

41.44

2.16

31.65

6.67

42.11

2.00

42.51

1.91

superball

43.15

1.77

41.98

2.03

41.82

2.07

34.38

4.87

44.14

1.58

45.91

1.29

th_spools

41.86

2.06

40.33

2.45

39.53

2.69

31.72

6.61

42.60

1.89

44.58

1.50

watercol

38.74

2.95

38.62

2.99

39.27

2.77

30.30

7.79

39.83

2.60

41.34

2.19

Average

41.40

2.39

40.43

2.71

41.21

2.45

34.00

5.37

42.39

2.14

44.17

1.75

Std.dev

3.76

1.13

3.96

1.41

3.76

1.18

2.75

1.94

3.72

1.07

3.83

0.88

S=32

Methods

CNMF

MF

SNNMF

G-SOMP+

BSR

Proposed NSSR

balloons

44.78

1.47

41.92

2.04

40.55

2.39

35.25

4.41

42.96

1.81

45.55

1.35

beads

33.22

5.57

31.38

6.88

30.05

8.02

29.05

8.99

31.14

7.07

33.31

5.51

cd

30.81

7.34

31.10

7.10

31.34

6.91

28.23

9.88

30.93

7.25

33.11

5.64

chart_toy

37.87

3.26

38.29

3.10

38.06

3.19

32.70

5.91

39.01

2.86

42.06

2.01

clay

44.80

1.47

42.17

1.99

42.34

1.95

39.29

2.77

42.53

1.90

46.29

1.24

cloth

34.57

4.77

35.50

4.28

32.63

5.96

30.00

8.06

34.72

4.68

36.23

3.94

eg_statue

45.06

1.42

46.57

1.20

46.49

1.21

38.36

3.08

47.24

1.11

47.64

1.06

face

44.40

1.54

42.42

1.93

42.43

1.93

35.28

4.39

43.55

1.69

44.08

1.60

f_beers

40.83

2.32

43.04

1.80

42.72

1.86

35.95

4.07

41.41

2.17

44.35

1.55

f_food

38.76

2.94

38.68

2.97

36.75

3.71

31.20

7.03

39.68

2.65

42.79

1.85

f_lemon_s

40.09

2.52

38.90

2.89

37.31

3.47

29.95

8.11

40.78

2.33

43.57

1.69

f_lemons

42.66

1.88

45.49

1.36

44.17

1.58

37.35

3.46

45.43

1.36

48.56

0.95

f_peppers

37.66

3.34

41.81

2.07

40.28

2.47

31.62

6.69

42.13

2.00

44.86

1.46

f_strawbe

43.07

1.79

41.28

2.20

43.16

1.77

33.69

5.27

44.24

1.56

46.46

1.21

f_sushi

37.18

3.53

40.84

2.31

39.24

2.78

32.78

5.85

39.05

2.84

42.92

1.82

f_tomates

39.73

2.63

42.08

2.01

41.18

2.23

34.30

4.92

42.56

1.90

45.16

1.41

feathers

38.37

3.08

38.14

3.16

34.14

5.01

32.67

5.93

36.96

3.62

39.81

2.61

flowers

42.20

1.98

39.89

2.58

37.54

3.38

32.98

5.72

40.53

2.40

42.55

1.90

g_tiles

36.96

3.62

37.04

3.58

35.40

4.33

28.98

9.06

36.20

3.95

36.49

3.82

hairs

39.96

2.56

41.46

2.15

41.62

2.12

35.26

4.40

43.02

1.80

44.35

1.55

j_beans

33.96

5.11

33.25

5.54

32.85

5.81

28.77

9.29

34.13

5.01

37.10

3.56

oil_paint

37.29

3.48

38.90

2.90

38.83

2.92

32.72

5.90

39.57

2.68

40.93

2.29

paints

36.54

3.80

34.18

4.99

35.83

4.12

30.13

7.94

35.95

4.06

36.91

3.64

p_face

40.07

2.53

41.58

2.13

41.66

2.11

38.68

2.97

40.96

2.28

41.80

2.07

pompoms

38.26

3.12

36.04

4.02

36.38

3.87

29.98

8.08

36.27

3.92

42.15

1.99

r_apples

45.51

1.35

44.57

1.51

42.60

1.89

36.83

3.68

45.79

1.31

47.42

1.09

r_peppers

41.28

2.20

43.64

1.68

40.87

2.31

36.44

3.84

43.94

1.62

47.01

1.14

sponges

42.81

1.85

40.10

2.52

39.81

2.61

35.42

4.32

39.37

2.74

43.93

1.62

s_toys

39.31

2.76

35.73

4.17

38.22

3.13

29.21

8.83

37.72

3.31

38.07

3.18

superball

40.37

2.44

38.67

2.97

38.93

2.89

34.75

4.67

41.14

2.24

44.19

1.57

th_spools

38.62

2.99

37.05

3.58

38.30

3.10

31.85

6.52

39.04

2.85

41.97

2.03

watercol

37.82

3.28

38.03

3.20

37.75

3.30

27.41

10.87

38.31

3.10

40.76

2.34

Average

39.53

2.93

39.37

3.03

38.73

3.26

33.03

6.09

39.88

2.88

42.26

2.21

Std.dev

3.55

1.30

3.76

1.44

3.79

1.57

3.27

2.21

3.91

1.46

4.01

1.19

 

Table 2 PSNR and RMSE results of the test methods on the Harvard dataset (Uniform blur kernel)

S=8

Method

CNMF

MF

SNNMF

G-SOMP+

BSR

Proposed NSSR

PSNR

RMSE

PSNR

RMSE

PSNR

RMSE

PSNR

RMSE

PSNR

RMSE

PSNR

RMSE

img1

46.20

1.25

46.01

1.28

46.09

1.26

44.93

1.45

46.38

1.22

46.30

1.23

img2

44.98

1.44

42.56

1.90

44.26

1.56

39.08

2.83

45.46

1.36

45.17

1.41

imga1

43.20

1.76

43.51

1.70

43.32

1.74

40.29

2.47

43.67

1.67

43.69

1.67

imga2

50.76

0.74

50.22

0.79

50.74

0.74

48.92

0.91

50.87

0.73

50.90

0.73

imga5

50.70

0.74

50.15

0.79

49.99

0.81

41.41

2.17

50.74

0.74

50.87

0.73

imga6

41.74

2.09

43.35

1.73

42.54

1.90

34.25

4.95

41.51

2.14

44.07

1.60

imga7

45.70

1.32

45.77

1.31

45.82

1.31

42.18

1.98

45.59

1.34

45.82

1.30

imgb0

44.06

1.60

45.01

1.43

45.58

1.34

43.15

1.77

44.11

1.59

46.03

1.27

imgb1

40.30

2.46

40.46

2.42

40.49

2.41

27.71

10.50

40.49

2.41

40.46

2.42

imgb2

44.84

1.46

43.78

1.65

44.39

1.54

37.78

3.29

44.57

1.51

45.06

1.42

imgb3

44.72

1.48

43.31

1.74

44.66

1.49

34.61

4.75

45.05

1.43

45.53

1.35

imgb4

38.10

3.17

37.65

3.34

38.64

2.98

36.25