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Abstract

Learning feature embedding directly from images with-

out any human supervision is a very challenging and essen-

tial task in the field of computer vision and machine learn-

ing. Following the paradigm in supervised manner, most

existing unsupervised metric learning approaches mainly

focus on binary similarity in Euclidean space. However,

these methods cannot achieve promising performance in

many practical applications, where the manual information

is lacking and data exhibits non-Euclidean latent anatomy.

To address this limitation, we propose an Unsupervised Hy-

perbolic Metric Learning method with Hierarchical Simi-

larity. It considers the natural hierarchies of data by taking

advantage of Hyperbolic metric learning and hierarchical

clustering, which can effectively excavate richer similar-

ity information beyond binary in modeling. More impor-

tantly, we design a new loss function to capture the hier-

archical similarity among samples to enhance the stability

of the proposed method. Extensive experimental results on

benchmark datasets demonstrate that our method achieves

state-of-the-art performance compared with current unsu-

pervised deep metric learning approaches.

1. Introduction

Learning a precise distance metric for similarity mea-

surement is a key ingredient of various computer vision

tasks, such as face recognition [13, 50], image classification

[5, 53, 6], and person re-identification [52]. Therefore, met-

ric learning has aroused much attention and many classical

methods have been proposed in the past decades [6, 45, 13].

With the resurgence of deep neural networks, Deep Metric

Learning (DML) has emerged as a powerful tool in many

practical applications [34, 30, 2, 29, 44]. It targets at seek-

ing a reliable embedding space by virtue of nonlinear deep

neural networks, where a well-designed metric loss func-

*J.Y. and L.L. made equal contributions, C.D. is corresponding author.

tion brings positive samples closer to anchors, but pushes

negative samples far away from the anchors.

Most of the existing DML methods usually use large-

scale data for training. They can be roughly divided into

two categories: structure-learning methods and hard min-

ing methods. For the former, the crucial point is to con-

struct a proper loss function that plays a key role in many

well-known DML methods. To this end, numbers of objec-

tives [5, 34, 30, 40, 35, 29, 32, 20], including commonly-

used contrastive loss [5], triplet loss [34] and lifted structure

loss [30], have been reported to mine underlying similarity

relationships among training data in the literature. While

the second category, i.e., hard mining approaches, intends

to enhance the discriminative ability of the learned embed-

ding by sampling meaningful hard examples. Since training

with numerous easy examples may suffer from inefficiency

and poor performance, hard sample mining has become a

prevalent technique in DML [30, 15, 12, 10, 9, 36].

However, in real-world tasks, supervised DML methods

are often inapplicable since the labeled data is not avail-

able. To address this issue, many unsupervised deep learn-

ing algorithms have been introduced [48, 51, 17, 49], which

attempt to learn the inherent structure of training data with-

out using explicitly-provided labels. A common unsuper-

vised DML manner mines potential sample relationship by

an auxiliary algorithm such as clustering, and then utilizes

the learned pair-wise information as input to perform the

DML task. For example, MOM [18] exploits a random walk

process to discover the neighborhood of unlabeled data in

the manifold space and the Euclidean space to excavate the

pairwise information. Compared with the ground truth, the

learned pairwise information usually contains label noise,

which makes the DML stage unstable. Therefore, how

to discover more semantic information as supervision is

still a big challenge. Moreover, inspired by self-supervised

learning [17, 49], TAC-CCL [24] integrates self-supervised

module into the common unsupervised DML framework to

boost the performance. Nonetheless, this algorithm ignores

the latent metric information of unlabeled data. It is not
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Figure 1. The brief description of different ways to excavate and use similarity information in CUB dataset. In conventional deep metric

learning (bottom), given an anchor, we can only address positive pairs and negative pairs as supervision, and all negative pairs will get the

same similarity. In fact, due to the complicated hierarchy, negative samples of the same anchor have different similarity degrees. To tackle

this problem, our method (top) excavates this hierarchical information and give different negative pairs different similarity degrees.

so much an unsupervised DML method as a plug-and-play

self-supervised module extended to DML.

To the best of our knowledge, as shown in Figure 1,

images often contain representatives of multiple classes in

real-world applications. For example, suppose an anchor in

Green Jay, instance in Florida Jay and Ovenbird are both

negative samples, but the anchor is more similar to the point

of Florida Jay than one of Ovenbird. Because all samples

in Florida Jay and Green Jay belong to the same second

class Jay. Previous approaches typically relying on binary

labels indicating whether the image pairs are similar or not

only address a small subset of similarity relations [21]. Due

to the powerful performance of deep learning with labeled

data, such supervised DML methods can sometimes obtain

good enough results. However, lacking explicitly-provided

labels, the performance of these unsupervised DML meth-

ods with binary supervision is severely degraded in facing

some specific scenarios. On the other hand, most existing

DML methods prefer to use Euclidean embeddings to facil-

itate calculation. However, recent research has proven that

many types of data from a multitude of fields (e.g. Net-

work Science and Computer Vision) exhibit a highly non-

Euclidean latent anatomy [1]. In such cases, these DML

methods based on Euclidean space obviously do not pro-

vide the most powerful or meaningful geometrical repre-

sentations of data. As a result, to improve the model perfor-

mance, it is extremely important and challenging to capture

the complicated structure that implicitly exists in real data.

In this work, we propose a novel unsupervised DML

method, dubbed Unsupervised Hyperbolic Metric Learn-

ing with Hierarchical Similarity, which can effectively ex-

cavate the inherent semantic information from unlabeled

data. Considering the hierarchical relations between images

shown in Figure 1, we first embed the data points from orig-

inal Euclidean space into Hyperbolic space, which induces

a new Hyperbolic DML framework. Specifically, we use hi-

erarchical clustering to generate pseudo hierarchical labels

rather than binary labels as supervision for DML task as il-

lustrated in Figure 1. And then, we design a novel loss func-

tion to enhance the stability of the model using the inher-

ent richer similarity information discovered by hierarchical

clustering. It should be noted that the proposed loss takes

the similarity degrees of data pairs into account. Thus, it

can well characterize the multi-level relations in the learned

hyperbolic embedding space, which is suitable for dealing

with triplet supervision task. Our contributions can be sum-

marized as follows:

• We propose the first hyperbolic unsupervised deep

metric learning framework, which can well capture the

hierarchical structure of data by conducting hierarchi-

cal clustering in Hyperbolic embedding space.

• We design a new metric loss function for hierarchical

relations. Unlike existing metric losses which are only

interested in binary similarity, our loss aims to discover

richer similarity information in unsupervised manner

by taking full advantages of the learned hierarchical

labels.

• Our proposed model achieves the state-of-the-art per-

formances on clustering and retrieval tasks over three

benchmark datasets, including CARS196, CUB-200-

2011 and Stanford Online Products.

2. Related Work

In this section, we review the basic facts about deep met-

ric learning and hyperbolic geometry.
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2.1. Deep Metric Learning

With the significant progress of deep learning, a number

of deep metric learning approaches have been proposed to

learn non-linear mappings of input images [5, 34, 46, 37].

Many recent deep metric learning methods are built on pair-

based [14, 40, 30, 42], optimized by computing the pair-

wise similarities between instances in the embedding space,

and Proxy-based [27, 32, 20], guided by comparing each

sample with proxies. Generally, pair-based methods can

be cast into a unified weighting formulation through Gen-

eral Pair Weighting (GPW) framework [42]. Hard exam-

ple mining is another often-used technique to speed up con-

vergence and enhance the discriminative power of feature

embeddings in deep metric learning [6, 15, 12, 36]. In

addition, considering the limitation of mini-batch training,

where only a mini-batch of instances is accessible at each it-

eration, Cross-batch memory (XBM) [43] provides a mem-

ory bank for the feature embeddings of past iterations. To

this end, the informative pairs can be identified across the

dataset instead of a mini-batch. However, most of the men-

tioned methods can only deal with binary similarity.

2.2. Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geometry,

which drops the parallel line postulate while keeping the

remaining four of the five of the postulates of Euclidean

geometry. In contrast with the hypersphere S
d and the

Euclidean space R
d, the hyperbolic space H

d can be

constructed using various isomorphic models such as the

Poincaré half-plane model and the Poincaré ball. The d-

dimensional Poincaré ball Dd
τ is a model of the hyperbolic

space H
d with curvature τ . Intuitively, hyperbolic spaces

can be thought of as continuous versions of trees, which

makes it suitable for constructing hierarchical structure in-

formation as shown in Figure 2. Hence, trees can be em-

bedded with arbitrarily low error into the Poincaré model of

hyperbolic geometry.

Recently, there has been significant research interest on

hyperbolic geometry. For example, hyperbolic embeddings

have become a popular technique to model real data with

tree structure from network science [28]. In order to cap-

ture the natural hierarchies of data, hyperbolic embeddings

have been successfully integrated into neural networks in

the field of computer vision [25, 26, 19] and natural lan-

guage processing [39]. In particular, hyperbolic (Graph

Convolutional) neural networks [4, 11] have been proposed

to lead to more faithful embeddings and accurate models.

These developments construct the analogs of familiar lay-

ers in hyperbolic spaces, i.e., the core neural network oper-

ations are conducted in a model of hyperbolic space.

Figure 2. The brief comparison between embedding of trees in

Euclidean space (left) and Poincaré Ball (Right). In Poincaré Ball,

purple curves are same length geodesics, i.e. ”straight lines”.

3. Methodology

3.1. Overview

We present a novel hyperbolic deep metric learning

method named Unsupervised Hyperbolic Deep Metric

Learning with Hierarchical Similarity which provides a hy-

perbolic DML model towards unlabeled data by mining

and using hierarchical similarity information. Our network

structure is shown in Figure 3. The model can be divided

into two modules, the hyperbolic metric learning module

and the hierarchical clustering module.

Given a training set D = {x1,x2, · · · ,xn} without

explicitly-provided labels, we first extract image features to

build a hyperbolic metric space Z = {zi = f(xi|θ)}ni=1

through the hyperbolic metric learning module initialized

by pre-train model. And then, we conduct hierarchical clus-

tering on the learned hyperbolic metric space. According

to the hierarchical clustering result H, similarity degree

S = {sij}ni,j=1
of sample pairs will be calculated. Using

similarity S as supervision, we can fine-tune the hyperbolic

metric learning module guided by our proposed new loss

with hierarchical similarity. Throughout this paper, ‖ · ‖
denotes the l2-norm of a vector.

3.2. Hyperbolic Metric Learning

In many real-world applications, only raw data without

any extra supervised information (e.g., explicitly-provided

labels) can be available. In this scenario, how to discover

richer similarity from data itself becomes important. Con-

sidering the intrinsic semantic structure of data described in

Figure 1, we hope to derive a new metric learning frame-

work to capture such hierarchical similarity. The negative

curvature of the hyperbolic space is widely known to ac-

curately capture parent-child relationships [28, 11, 7]. In-

spired by this principle, hierarchical relations between train-

ing samples call for the use of hyperbolic geometry in our

method. Therefore, we introduce a hyperbolic metric learn-
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Figure 3. The hyperbolic unsupervised deep metric learning framework of our proposed metehod. As the figure shows, our network consists

of two modules, hierarchical clustering module and hyperbolic metric module, which can be trained simultaneously. In each iteration, the

hierarchical clustering module conducts hierarchical clustering over the learned metric space, and then the metric module is trained with

the supervision of the pseudo hierarchical labels yielded by the clustering process. For the initialization, we use the pre-trained model to

extract feature vectors for clustering.

ing framework that benefits from the expressiveness of both

metric neural networks and hyperbolic embeddings.

There are several well-studied models of hyperbolic ge-

ometry, which endow Euclidean space with a hyperbolic

metric. Following the majority of existing works, we con-

sider the Poincaré ball model of hyperbolic space, which

corresponds to a Riemannian manifold with a particular

metric tensor. The Poincaré ball model is defined by the

manifold D
d
τ = {x ∈ R

d : τ‖x‖ < 1, τ ≥ 0}, where addi-

tional hyperparameter τ denotes the curvature of Poincaré

ball. In this model, the induced distance between any two

points zi, zj ∈ D
d
τ is given by the following expression

[28]:

dD(zi, zj) = cosh� 1

�
1 + 2

‖zi − zj‖2
(1− ‖zi‖2)(1− ‖zj‖2)

�
.

(1)

Then, we add the hyperbolic network layer at the end of

the original deep metric learning model (i.e. convolutional

neural network with a full connected layer) to map the in-

put features from R
n to the hyperbolic manifold D

n
τ via the

“ exp ” mapping, which is given by:

z = expτ (x) := tanh
� √

τ‖x‖
� x√

τ‖x‖ . (2)

In this module, we use Euclidean operations in most lay-

ers (i.e. convolutional neural network with a full connected

layer), and utilize the “ exp ” map to move from the Eu-

clidean to hyperbolic space at the end of the network.

3.3. Hierarchical Similarity Generation

For better guiding the hyperbolic metric learning mod-

ule, we hope to discover richer relation information rather

than binary similarity. Hierarchical clustering is an effective

and often-used tool for discovering meaningful representa-

tions of data. As shown in Figure 4, in hierarchical cluster-

ing, data points are arranged as the leaves of a multi-layered

tree structure with internal nodes representing meaningful

and potentially overlapping sub-clusters of the data. To this

end, we conduct hierarchical clustering in the learned hy-

perbolic space.

In each merging step of hierarchical clustering, we cal-

culate the distance between any two sub-clusters as:

dab =
1

nanb

X

za
i 2 Ca ,z

b
j 2 Cb

‖zai − z
b
j‖, (3)

where z
a
i , zbj are samples in the sub-cluster Ca, Cb respec-

tively, and na, nb represent the number of samples in Ca, Cb

respectively. The closest two sub-clusters will be grouped

together and become a new sub-cluster.

After hierarchical clustering, we can get the distance re-

lationship between all sub-clusters. According to distance

calculated by Eq. (3), the similarity levels of these sub-

clusters will be derived through setting distance threshold

δ. With distance threshold δ, sub-clusters whose distance

is less than δ will be aggregated. For example, in Figure

4, we set distance threshold {5, 10, 15}, and obtain three

similarity levels. Under different similarity levels, data is

divided into different sub-clusters, e.g., data is composed of
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